Data Enhanced Products

Data Enhanced Products Mosaic Factor icon

A través de diferentes fuentes de datos (es decir, pruebas físicas) y modelos de ML y, por lo general, en combinación con nuestras soluciones de gemelos digitales, nuestra solución de mejora de datos puede aprender, predecir y simular resultados para proporcionar configuraciones automáticas de productos que resulten en una mejora de productos y componentes durante el proceso de desarrollo.

Ver solution

Data As a Service Products

DaaS Mosaic Factor icon

Data as a Service (DaaS) es un modelo basado en la nube que permite a las empresas acceder, gestionar y analizar datos bajo demanda, sin necesidad de una amplia infraestructura local

Ver solution

Modelos de optimización

Optimisation Models icon Mosaic Factor

Los modelos de IA de optimización permiten a nuestros cliente mejorar procesos, reducir costes y aumentar la competitividad.

Ver solution

Modelos Descriptivos

Descriptive Models Mosaic Factor icon

Los modelos descriptivos tienen como objetivo describir patrones, relaciones y estructuras dentro de los datos. No predicen resultados futuros, pero proporcionan información sobre los fenómenos existentes.

Ver solution

Modelos Predictivos

Predictive models Mosaic Factor icon

El modelado predictivo, también conocido como análisis predictivo, es una disciplina que utiliza técnicas estadísticas, matemáticas y de inteligencia artificial para predecir resultados futuros basados en datos históricos.

Ver solution

LLMs

LLMs Mosaic Factor icon

En Mosaic Factor, nos centramos en la creación de LLM específicos de sector (o modelos lingüísticos ligeros) para nuestras organizaciones clientes.

Ver solution

Datos Sintéticos

Synthetic Data icon

Los datos sintéticos son datos artificiales generados a partir de datos originales utilizando un modelo entrenado para reproducir sus características y estructura.

Ver solution

Gemelos Digitales

Digital Twins Mosaic Factor icon

Para supervisar y optimizar los activos de la empresa en tiempo real , Mosaic Factor utiliza gemelos digitales. Éstos pueden predecir fallos, detectar ineficiencias y mejorar la toma de decisiones mediante el uso de datos.

Ver solution

Mantenimiento Predictivo

Predictive models Mosaic Factor icon

Para los modelos de mantenimiento predictivo, utilizamos tanto datos históricos como datos en tiempo real para anticipar fallos de los equipos o necesidades de mantenimiento. Al analizar los datos de los sensores, los registros de mantenimiento y otra información relevante, podemos programar el mantenimiento de forma proactiva, reducir el tiempo de inactividad y prolongar la vida útil de la maquinaria.

Ver solution

Previsión de Demanda y Coste

Predictive models Mosaic Factor icon

Nuestros modelos predictivos ayudan a las empresas a pronosticar la demanda de productos o servicios. Mediante el análisis de los datos históricos de ventas, la estacionalidad, los factores económicos y los eventos externos, podemos optimizar los niveles de inventario, asignar los recursos de manera eficiente y minimizar el exceso de existencias o los desabastecimientos.

Ver solution

Quality Analytics

Predictive models Mosaic Factor icon

Identificamos patrones que se correlacionan con defectos o problemas de calidad, lo que permite a las empresas tomar medidas correctivas temprano y mantener altos estándares de calidad.

Ver solution

Inventory Management

Predictive models Mosaic Factor icon

Utilizamos modelos predictivos para optimizar los niveles de inventario teniendo en cuenta factores como el tiempo de entrega, la variabilidad de la demanda y los costes de almacenamiento.

Ver solution

Supply Chain Management

Predictive models Mosaic Factor icon

Podemos utilizar análisis de datos históricos y en tiempo real para gestionar la cadena de suministro, optimizar el transporte y garantizar la entrega a tiempo de los productos.

Ver solution

Tendencias de Mercado

Predictive models Mosaic Factor icon

Nuestros modelos predictivos analizan los datos del mercado, el comportamiento de los consumidores y los factores externos para comprender los patrones, identificar tendencias y anticipar cambios.

Ver solution

Market Understanding

Descriptive Models Mosaic Factor icon

Nuestros modelos descriptivos de IA proporcionan información valiosa para la toma de decisiones y la comprensión de los sistemas complejos de las organizaciones.

Ver solution

Exploración de Patrones

Descriptive Models Mosaic Factor icon

Nuestros modelos descriptivos de IA proporcionan información valiosa para la toma de decisiones y la comprensión de los sistemas complejos de las organizaciones.

Ver solution

Trustworthy AI

Trustworthy AI Mosaic Factor icon

Al integrar modelos de IA en entornos en los que los estándares de compliance son importantes, Mosaic Factor ayuda a las empresas a gestionar la gobernanza de datos mediante la aplicación de soluciones Trustworthy AI.

Ver solution

Logística

Logistics

La mayor prioridad de Mosaic Factor en logística es compartir datos clave entre los diferentes actores de la cadena de suministro para optimizar el rendimiento y gestionar la sostenibilidad mitigando el impacto de estas operaciones.

Ver industry

Automoción

Industría Automoción

Mosaic Factor aplica soluciones de IA en diversos aspectos de la industria de la automoción, generalmente mejorando los vehículos y sus componentes durante su desarrollo.

Ver industry

Mobility

Mobility

La mayor prioridad de Mosaic Factor en Movilidad es optimizar los sistemas de transporte para la movilidad de las personas, mejorando al mismo tiempo la seguridad general y la sostenibilidad de las soluciones de transporte.

Ver industry

Corporate Services

Corporate Services

Nuestro aprendizaje automático y algoritmos complejos ayudan a las organizaciones a gestionar el cumplimiento normativo y el servicio al cliente para aumentar el nivel de servicio de su organización al tiempo que optimizan el tiempo de resolución de varios procesos.

Ver industry

Industria

Manufacturing

La mayor prioridad de Mosaic Factor en sector de fabricación es ayudar a nuestros clientes a reducir costes, aumentar la sostenibilidad y optimizar la cadena de producción.

Ver industry

Healthcare

Healthcare

La mayor prioridad de Mosaic Factor en el sector sanitario es hacer uso de los datos para mejorar la atención y el seguimiento de los pacientes de forma segura, optimizar los recursos de los sistemas de salud y facilitar la labor de los profesionales sanitarios.

Ver industry

Proyectos

PUERTO DE ANTWERP-BRUGES

Cargo Flow Predictor

Cliente

Partners

Port of Antwerp Bruges logo

El problema

Como parte del proyecto PIONEERS financiado por la Unión Europea, el Cargo Flow Predictor para el Port of Antwerp-Bruges (PoAB) explora cómo la analítica predictiva puede mejorar la eficiencia logística del puerto, habilitar el cambio modal y contribuir a los objetivos de movilidad climáticamente neutral y inteligente en el marco del European Green Deal.

La solución

En Mosaic Factor desarrollamos una herramienta de pronóstico impulsada por inteligencia artificial para la logística portuaria que predice los flujos de carga, demostrando el poder del análisis predictivo para mejorar la toma de decisiones operativas en el Puerto de Amberes-Brujas.

Con acceso continuo a datos y colaboración entre las partes interesadas, la solución está bien posicionada para pasar de piloto a producción, contribuyendo a un ecosistema portuario más inteligente, verde y eficiente.

La solución digital predice dos eventos críticos para la carga contenerizada:

  1. El Next Mode of Transport (NMOT), por ejemplo carretera, ferrocarril o vía fluvial interior
  2. El momento de salida (día de recogida en la terminal)

Esto fomenta una planificación logística más proactiva y sostenible y abre el camino para una futura integración en el ecosistema digital de PoAB, lo que permite:

  • Una mejora en la eficiencia operativa y la reducción de la congestión portuaria.
  • Una promoción del cambio modal hacia el transporte sostenible (ferrocarril, vía fluvial interior).
  • Aumento de la capacidad de toma de decisiones basada en datos para operadores de terminales y transporte.
  • Finalmente, demostrar la viabilidad de herramientas predictivas impulsadas por IA en un entorno portuario real.

Resultados

Este proyecto piloto contribuye directamente a los objetivos de política de la UE a través de:

  • Apoyar la agenda de cambio modal al proporcionar visibilidad avanzada sobre los modos de transporte interior.
  • Mejorar la eficiencia de recursos a nivel terminal a través de un apilamiento optimizado.
  • Demostrar cómo la IA y el aprendizaje automático pueden impulsar la innovación digital sostenible en los puertos.

El proyecto también ha entregado un prototipo de dashboard escalable que puede ser ampliado y mejorado con nuevos datos, y potencialmente transferido a otros puertos o nodos intermodales.

¿Tienes alguna pregunta?

Siempre estamos listos para ayudarte y responder tus preguntas.





    *Los campos marcados con un asterisco son obligatorios.